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Abstract Multi-trait (co)variance estimation is an
important topic in plant and animal breeding. In this
study we compare estimates obtained with restricted
maximum likelihood (REML) and Bayesian Gibbs
sampling of simulated data and of three traits (diameter,
height and branch angle) from a 26-year-old partial
diallel progeny test of Scots pine (Pinus sylvestris L.).
Based on the results from the simulated data we can
conclude that the REML estimates are accurate but the
mode of posterior distributions from the Gibbs sampling
can be overestimated depending on the level of the
heritability. The mean and median of the posteriors were
considerably higher than the expected values of the
heritabilities. The confidence intervals calculated with
the delta method were biased downwardly. The highest
probability density (HPD) interval provides a better
interval estimate, but could be slightly biased at the
lower level. Similar differences between REML and
Gibbs sampling estimates were found for the Scots pine
data. We conclude that further simulation studies are
needed in order to evaluate the effect of different priors
on (co)variance components in the genetic individual
model.

Introduction

In breeding for best benefit, there is generally a primary
key trait that receives most attention. Nevertheless there

are regularly other traits that deserve consideration since
they make a contribution to the final or future results in
case the key trait or its qualities are affected. Examples
are health traits of domestic animals and trunk quality
traits of wood-producing trees, where quantity-produc-
tion capacity is generally the primary trait that is bred
for. A favourable development of all traits that are of
some importance calls for methods for simultaneous
evaluation, such as multi-trait restricted maximum
likelihood (REML) covariance estimation that has been
used since long in the breeding industry (e.g. Meyer and
Thompson 1986; Meyer 1991). The principal ambition is
to reveal whether interrelationships are favourable or
unfavourable for future selection (i.e. evaluating if traits
are positively or negatively correlated depending on the
objectives of the study). The multi-trait ‘animal (or tree
or individual) model’ was introduced in quantitative
genetics by Henderson and Quaas (1976). Techniques
based on the individual model are well known to per-
form better than traditional family-based methods in the
estimation of variance components and prediction of
breeding values because they can use all the informa-
tion from the pedigree and are less sensitive to bias
introduced by selection (Sorensen and Kennedy 1984;
Henderson 1986; Borralho 1995).

Historically, most analyses in quantitative genetics
have been conducted with classical (also called frequen-
tist) ANOVA methods. Probability is here viewed from
the framework of hypothetically repeating an experiment
a large number of times under identical conditions.
Nowadays ANOVA methods have largely been replaced
by REML methods for the estimation of (co)variance
components and prediction of breeding values using
(approximate) best linear unbiased predictors (BLUPs).
The REML method, first described by Patterson and
Thompson (1971) for unbalancedmixedmodels, has been
extensively used in, principally, animal breeding. How-
ever, the REML approach requires an iterative technique
that usually tends to be computationally very demanding,
especially for multivariate data sets, and much effort has
therefore been devoted to development of more efficient
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Theor Appl Genet (2006) 112: 1441–1451
DOI 10.1007/s00122-006-0246-x



algorithms. Various computational procedures have been
developed for REML estimation in multi-trait models,
e.g. the derivative-free (DF) method (Meyer 1991), the
expectation maximization (EM) method (Misztal and
Perez-Encisco 1993) and the average information (AI)
method (Jensen et al. 1996). In common, these REML
methods use iterative algorithms for finding the maxi-
mum of the likelihood. Unfortunately, whilst it is easy to
obtain estimates of the variance of the resulting estimates
of parameters (the variance components), it is muchmore
difficult to calculate reliable confidence intervals around
functions of these parameters (Harville and Fenech 1985;
Burch and Iyer 1997; Soria et al. 1998).

The current advance in computing power has virtu-
ally resulted in a Bayesian revolution in the development
of statistical methods in genetics (Shoemaker et al. 1999;
Sorensen and Gianola 2002; Xu 2003; Beaumont and
Rannala 2004). In the Bayesian paradigm, a probability
can be understood as a measure of uncertainty or degree
of belief. Bayesian methods are especially useful in
complex situations and are often easier to interpret than
ordinary frequentist methods. Given the complexity of
many genetic problems, it is clear that Bayesian methods
could contribute considerably to improve analyses.
Bayesian Markov chain Monte Carlo (MCMC) methods
were introduced in quantitative genetics in the first half
of the 1990s (Wang et al. 1993; Sorensen et al. 1994),
facilitated by the development of the Gibbs sampling
procedure (Geman and Geman 1984; Gelfand and Smith
1990). The Gibbs sampler successively samples from
conditional distributions of all parameters in a model in
order to generate a random sample of the marginal
posterior distribution, which is the target for Bayesian
inference. Gibbs sampling has been extensively practised
in animal breeding and different algorithms have been
developed for multi-trait evaluation (e.g. Jensen et al.
1994; van Tassel and Van Vleck 1996). However, Gibbs
sampling in plant applications are still scarce (e.g. Soria
et al. 1998; Gwaze and Woolliams 2001; Zeng et al.
2004; Waldmann et al. 2005).

The primary goal of this study is to compare REML
and Gibbs sampling estimates of genetic parameters
from multi-trait individual tree models. The methods are
applied to simulated data and data from a Scots pine
(Pinus sylvestris L.) diallel progeny test from northern
Sweden, measured for three traits (bole diameter, tree
height and branch angle). We restrict the analysis to
an additive model because the additive components
are most easily applicable in practical breeding
based on recurrent selection from sexually propagated
populations.

Material and methods

Multi-trait mixed model equations

Following Henderson and Quaas (1976), the multi-trait
individual model can be formulated as

yi ¼ Xibi þ Ziai þ ei; ð1Þ

where in our study the traits are i = 1, 2, 3 (see below).
Moreover, the design and incidence matrices are the
same over traits ði.e.X1 ¼ X2 ¼ X3 ¼ X andZ1 ¼ Z2 ¼
Z3 ¼ ZÞ and relate the fixed ðbiÞ and additive ðaiÞ effects
to the data ðyiÞ; respectively, and ei are vectors with
residual effects. The data ðyiÞ and fixed effects ðbiÞ can be
merged into joint vectors ðyÞ and ðbÞ; respectively. To
complete the mixed model equations (MME) it is nec-
essary to specify the covariance matrix R that is asso-
ciated with the combined residual eT ¼ eT1 ; e

T
2 ; e

T
3

� �

vector and the genetic covariance matrix G that relates
to aT ¼ aT1 ; a

T
2 ; a

T
3

� �
: If R0 is an error covariance matrix

with the ijth element being rE (i, j) the Kronecker
product can be used to obtain R ¼ R0 � I; where I is the
identity matrix. Equivalently, let G0 be a submatrix with
additive genetic covariances cij=rA (i, j) and using the
Kronecker product the following result is obtained: G ¼
G0 � A; where A is the relationship matrix associated
with the studied individuals. Given these definitions, the
final multi-trait MME can be expressed as

XTR�1X XTR�1Z
ZTR�1X ZTR�1ZþG�1

� �
b̂
â

� �
¼ XTR�1 y

ZTR�1 y

� �
: ð2Þ

Likelihood and AI REML computation

Defining Var yð Þ ¼ V ¼ ZGZT þ R;P ¼ V�1 � V�1X
XTV�1X
� ��1

XTV�1 and assuming multivariate normal-
ity,�2 times the restricted log-likelihood can bewritten as

L hð Þ ¼�2 lnðlÞ ¼ cþ ln Vj jþ ln XTV�1X
�� ��þ yTPy; ð3Þ

where h is a collection of all parameters in G and R and c
a constant. For calculation of the REML estimates, it is
necessary to compute the first and second order deriv-
atives of the log-likelihood as

@ L hð Þ
@ hj

¼ tr
@ V

@ hj
P

� �
� yTP

@ V

@ hj

� �
Py ð4Þ

and

@2 L hð Þ
@ hj @ hj0

¼ �tr @ V

@ hj
P
@ V

@ hj0
P

� �
þ 2 yTP

@ V

@ hj
P
@ V

@ hj0
Py:

ð5Þ

The AI REML algorithm is an efficient, flexible and
fast method that was first described by Gilmour et al.
(1995) and consequently has been implemented in vari-
ous computing programs for breeding purposes. How to
obtain the solutions for Eqs. 4 and 5 in a multi-trait
model is presented in Jensen et al. (1996). Here we just
note that the key step in the AI algorithm is the calcu-
lation of an average information matrix (IA) for evalu-
ation of Eq. 5, instead of calculating the observed and
expected information matrices:

1442



IA ¼
1

2

@2 L hð Þ
@ hj @ hj0

þ E
@2 L hð Þ
@ hj @ hj0

� �� �
¼ yTP

@ V

@ hj
P
@ V

@ hj0
Py:

ð6Þ

Further details and description of the iterative scheme
for computation of the parameters is described in Jensen
et al. (1996).

Sampling precision of estimated REML parameters
and their functions

In addition to the maximum likelihood estimates, with
the AI REML algorithm, one can obtain the variance
(and thus the standard deviation) estimates of the
parameters through the inverse of the negative average
information matrix, Var ĥ

� 	
¼ �IAð Þ�1: Unfortunately,

it is more difficult to obtain exact estimates of the vari-
ance of functions of the variance components (for
example the heritability) with REML methods (Harville
and Fenech 1985; Burch and Iyer 1997). However, the
variance of a function of random variables can be
computed approximately with the ’delta method‘ based
on Taylor expansion (Kendall and Stuart 1977; Hohls
1996; Lynch and Walsh 1998). If we estimate the heri-
tability as the ratio of the additive genetic variance and
the phenotypic variance ði.e. ĥ2 ¼ r̂2

A



r̂2
PÞ; the standard

error of ĥ2 is

SE ĥ2
� 	

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ ĥ2

@ h0

 !

�IAð Þ�1 @ ĥ2

@ h

 !vuut ; ð7Þ

which for trait i can be rewritten as

where Var r̂2
P ið Þ

� �
¼ Var r̂2

A ið Þ
� �

þ Var r̂2
E ið Þ

� �
þ

2Cov r̂2
A ið Þ; r̂2

E ið Þ
� �

and Cov r̂2
A ið Þ; r̂2

P ið Þ
� �

¼ Var r̂2
A ið Þ

� �

þCov r̂2
A ið Þ; r̂2

E ið Þ
� �

:
In order to calculate the standard errors for the

phenotypic, additive and environmental correlation
coefficients ðr̂P; r̂A and r̂E; respectivelyÞ; ĥ2 in Eq. 7 can be
substituted with r̂k i; jð Þ ¼ r̂k i; jð Þ= r̂2

k ið Þ r̂2
k jð Þ

� �
1=2 (where

k is P, A or E and i, j trait numbers) resulting in

The program Asreml (Gilmour et al. 2002), which is
based on the AI REML algorithm and can estimate
standard errors for functions of the variance compo-
nents through the delta method, was used in this study.
Based on the standard errors from the delta method,
approximate 95% confidence intervals (DCI) were
computed as ĥ� 1:96r̂ĥ:

Bayesian inference using Gibbs sampling

Bayesian methods are based on formulating a joint
probability distribution over the data ðyÞ and the col-
lection of the model parameters and the missing data (h).
The joint distribution consists of two parts: the prior
distribution and the likelihood. The posterior distribu-
tion is then obtained using Bayes’ theorem. Usually,
the focus of inference is on h and Bayes’ theorem
can therefore be written as the probability p h yjð Þ /
p y hjð Þp hð Þ; which says that the posterior distribution is
proportional to the product of the likelihood and the
prior. In the Bayesian paradigm, a probability is a direct
measure of uncertainty (Gelman et al. 2004).

First, similar to the frequentist model in Eq. 1,
assume that the phenotypic data in y follows a multi-
variate normal (MVN) distribution:

y bj ; a;R0 �MVN Xbþ Za;Rð Þ ; ð10Þ

where parameters are as specified earlier. To perform
Bayesian analysis, it is required to assign prior distri-
butions to both the location effects ðb; aÞ and all the
variance and covariance components ðG0;R0Þ: Usually,
if no information from earlier studies exists, it is

common practice to use non-informative priors. A non-
informative flat prior for the fixed effects is

p bð Þ / constant; ð11Þ

which needs to be given upper and lower bounds
bmin; bmaxð Þ in order to become a proper prior. The
vector of additive genetic effects is assumed to follow an
MVN distribution (which can be thought of as the

SE ĥ2 ið Þ
� 	

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĥ2 ið Þ
� 	2 Var r̂2

A ið Þ
� �

r̂4
A ið Þ þ

Var r̂2
P ið Þ

� �

r̂4
P ið Þ �

2Cov r̂2
A ið Þ; r̂2

P ið Þ
� �

r̂2
A ið Þr̂2

P ið Þ

� �s

; ð8Þ

SE r̂k i;jð Þð Þ

�



r̂2k i;jð Þ
Var r̂2

k ið Þ
� �

4r̂4
k ið Þ þ

Var r̂2
k jð Þ

� �

4r̂4
k jð Þ �Var r̂k i;jð Þð Þ

r̂2
kði;jÞ

�
þ
2Cov r̂2

k ið Þ
� �

r̂2
k jð Þ

4r̂2
k ið Þr̂2

k jð Þ �
2Cov r̂2

k ið Þ
� �

r̂k i;jð Þ
2r̂2

k ið Þr̂k i;jð Þ �2Cov r̂k i;jð Þð Þr̂2
k jð Þ

2r̂k i;jð Þr̂2
k jð Þ

�s

:

ð9Þ
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vaguely informative prior for these effects):

a G0j ; A �MVN 0; G0 � Að Þ: ð12Þ

For the covariance matrices G0 and R0; the scaled
inverted Wishart distributions,

p G0 mAj ; VAð Þ / G0j j�ð1=2Þ mAþkþ1ð Þexp � 1

2
tr G�10 V�1A

� �� �

ð13Þ

and

p R0 mEj ; VEð Þ / R0j j�ð1=2Þ mEþkþ1ð Þexp � 1

2
tr R�10 V�1E

� �� �
;

ð14Þ

are used as priors, where k=3 for a trivariate model.
The hyperparameters ms and Vs (s = A or E) generate a
uniform (non-informative) inverse Wishart (IW) distri-
bution by setting ms=� (k+1 ) and Vs ¼ 0 (Sorensen
and Gianola 2002).

In the current study we have no missing data and
therefore we can write the joint posterior density of all
parameters as

p b; a;G0;R0 yjð Þ / p y b; a;R0jð Þp a G0jð Þp G0ð Þp R0ð Þ:
ð15Þ

Note that the prior of the fixed effects cancels out in
Eq. 15 because we have chosen to treat them as con-
stants. For implementation of a Gibbs sampling algo-
rithm it is necessary to derive the fully conditional
posterior distributions from Eq. 15 by consecutively fix-
ing the conditioning variables of this joint density. If
there had been missing data we should first have gener-
ated values for those observations, for example with
multivariate data augmentation. However, in our study
we first derive the full conditional posterior distribution
for the location effects. Therefore, rewrite the MME in
Eq. 2 as

C û ¼ y: ð16Þ

The full conditional posterior distribution of u (the
location effects) is then

u R0j ; G0; y �MVN û; C�1
� �

: ð17Þ

For the covariance matrices, first define

SA ¼
aT1A

�1a1 aT1A
�1a2 aT1A

�1a3
aT2A

�1a1 aT2A
�1a2 aT2A

�1a3
aT3A

�1a1 aT3A
�1a2 aT3A

�1a3

2

4

3

5 ð18Þ

and

SE ¼
eT1 e1 eT1 e2 eT1 e3
eT2 e1 eT2 e2 eT2 e3
eT3 e1 eT3 e2 eT3 e3

2

4

3

5: ð19Þ

The full conditional distribution for the genetic
covariance matrix is obtained by combining the prior 13
with the density p a G0jð Þ as

p G0 b; a;R0; yjð Þ / G0j j�ð1=2Þ mAþnþkþ1ð Þ

� exp �1=2tr G�10 V�1A þ SA

� �� 
� �
;

ð20Þ

which is the kernel of the scaled inverse Wishart
distribution

G0 b; a;R0; yj � IW3 V�1A þ SA

� ��1
; mA þ n

� 	
; ð21Þ

where n is the number of individuals. Finally, the pos-
terior density of the residual covariance matrix is defined
as

p R0 b;a;G0;yjð Þ/ R0j j�ð1=2Þ mEþnþkþ1ð Þ

�exp �1=2tr R�10 V�1E þSE

� �� 
� � ð22Þ

and the Gibbs sampler simulates updates from the fol-
lowing inverse Wishart distribution

R0 b; a;G0; yj � IW3 V�1E þ SE

� ��1
; mE þ n

� 	
: ð23Þ

There are several ways to implement an algorithm that
samples from Eqs. 17, 21 and 23. We have used the
program gibbs1f90 (Misztal et al. 2002) which uses
block updating by traits.

Point, interval and kernel estimation of posterior
densities

After the parameters of the MCMC chains have been
checked graphically and for convergence (for example
by using the R statistic suggested by Brooks and Gelman
1998), it is necessary to summarize the posterior distri-
butions by some suitable point and interval statistics.
Commonly used measures of location of the posterior
densities comprise the mean, median and mode. For a
posterior distribution that is symmetric, the mean,
median and mode should all be the same. The mean and
median can easily be estimated using standard methods.
However, the mode is more difficult to obtain. Here, we
will use an approach that is based on finding the maxi-
mum of a kernel density. There are many different
methods available for estimation of kernel densities,
from simple histograms to advanced non-parametric
smoothing techniques. However, the kernel density
estimator at point u is often calculated as

p̂h uð Þ ¼ nhð Þ�1
Xn

i¼1
K h� uð Þ=h½ �; ð24Þ

where n is the number of iterations after burn-in and
thinning of the parameter (h ), K (the kernel) a normal
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probability density and h the bandwidth. It is important
to choose an appropriate bandwidth because this
parameter determines the amount of smoothing being
applied to the curve. We use the direct plug-in approach
for automatic selection of optimal bandwidth as imple-
mented in the KernSmooth package in the R software
(Wand and Jones 1995). The mode of the posterior
density is

~hMODE ¼ max p h yjð Þ½ �; ð25Þ

which can be obtained by finding the u value at
max p̂h uð Þ½ �:

In Bayesian statistics, intervals are often termed
credible (or posterior) intervals in order to distinguish
from frequentist confidence intervals. For symmetric
posterior distributions, a two-sided 100(1 � a )% cred-
ible interval (BCI) can be obtained from the MCMC
samples h(i) as

hna=2; hn 1�að Þ=2
� �

: ð26Þ

However, when the posterior distribution is not sym-
metric (i.e. skewed), a highest probability density (HPD)
interval is more desirable because a standard credible
interval will generally contain some parameter values
that have lower posterior probability than values outside
the interval. An HPD interval is adjusted so that the
probability ordinates at each tail are identical. More-
over, HPD intervals are also of the shortest length (Chen
and Shao 1999). Unfortunately, HPD intervals are more
difficult to compute than credible intervals, but Chen
and Shao (1999) described a method where the MCMC
sample can be used. This method is based on evaluating
all the j 100(1 � a )% credible intervals in the sample
and then selecting the one (at j*) with smallest interval
width according to

hj�þn 1�að Þ � hj� ¼ min
j

hjþn 1�að Þ � hj
� �

: ð27Þ

The ‘boa’ package in R was used for calculation of HPD
intervals based on the algorithm of Chen and Shao
(1999).

Scots pine material

The methods are applied to data from a Scots pine
(P. sylvestris L.) progeny test site at 64�18’N in north
Sweden, where full-sib progenies of 52 assumed unre-
lated parent trees were planted out in 1971 (identifica-
tion at Skogforsk: S23F7110264 Vindeln). The parent
trees were crossed according to a partial diallel
(approximate ‘circulant’) plan (Table 1; Kempthorne
and Curnow 1961). In total about 8,000 seedlings were
used, where about 200 full-sib families were represented
by 40 one-year-old seedlings per family. The labelled
seedlings were planted out unrestricted randomly using
2.2 m2 spacing, thus taking up roughly 4 ha of normal
forest land. The plantation was thoroughly mapped and

subdivided into 70 nearly square blocks to be used in
subsequent evaluations.

From the measurements in 1997, with about 65% of
the trees remaining after the initial mortality period, we
used the records of diameter at 130 cm above ground
(D), total tree height (H) and branch angle (B). The
branch angle was scored such that an average tree was
given score 5, and the range 1–9 was used to include all
trees including much better to much worse branch angle
appearance (that is, horizontal branches were given low
scores and upwards vertical branches high scores). It is
expected that the two size traits, D andH, are genetically
strongly positively correlated. The mortality of 35%
implies some patchiness in the originally even-spaced
plantation. However, only living trees with complete
records were considered (totally 4,970 individuals) in
order to avoid a selection effect in the measured sample.
D,H and B had mean values of 114 mm and 705 cm and
a mean score of 4.86, respectively. In order to facilitate
the computational procedures, for each trait, the records
were transformed to zero mean and unit variance before
analysis.

Simulated data

In order to evaluate the statistical properties of the DCI,
BCI and HPD intervals, we simulated data for two traits
corresponding to a one-way half-sib design with 50
maternal families (each with 25 offspring). The between-
and within-family variance were set to 2.5 and 97.5 for
trait one (corresponding to a heritability of 0.1). For
trait two, the variances were 10 and 70, respectively
(resulting in a heritability of 0.5). The exact 95% confi-
dence intervals of the heritabilities were calculated using
the mean squares from ANOVA and the quantiles of the
F distribution (for details see Lynch and Walsh 1998).
We generated 50 replicates and analysed each with AI
REML and Gibbs sampling. The root mean squared
errors (RMSE) were obtained as a measure of bias for
the lower and upper limits of DCI, BCI and HPD when
evaluated against the exact confidence intervals. We did
not test the statistical properties of the variance com-
ponents because this has recently been thoroughly eval-
uated elsewhere (Browne and Draper 2006). Moreover,
we did not simulate any genetic correlations because of
the lack of exact CI for this parameter.

Results

REML analysis of Scots pine data

In multi-trait REML analysis, no iteration algorithm
guarantees success unless the iterations are started with
parameter values that are sufficiently close to the final
estimates. Satisfactory starting values for variances were
obtained by univariate pre-runs. Approximate covari-
ances are less readily calculated. Bivariate pre-runs
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supported by qualified guesses will generally suffice,
particularly if correlations are estimated instead of
covariances, which belong to a theoretically unlimited
parameter space. There is an implemented option in
Asreml where to reformulate the multi-trait MME using
correlations. Thus, facilitated by the rescaled data rep-
resenting only three traits, it was quite straightforward
to obtain good REML estimates.

The resulting parameter estimates with standard errors
and approximate 95% DCI are presented in Tables 2 and
3 (theREMLcolumns). Anotable result is that the genetic
correlation between diameter and tree height, rA(D,H)=
0.64, appears weaker than the corresponding environ-
mental correlation, rE(D,H)=0.83, though the contrary
might equally well be expected under fairly similar test
conditions. But, the heritability span is similar towhat can
be supposed (h2=0.08 and 0.21 forD andH, respectively)
in an environment that is modifying diameter develop-
ment much more than height growth due to varying
competition between trees caused by patchiness.

Gibbs sampling analysis of Scots pine data

We ran two MCMC chains each of 1,300,000 iterations.
Graphical inspection of the trace and autocorrelation
plots suggested a burn-in of 50,000 iterations and thin-
ning of every 25th iteration for each chain, yielding a
total sample of 100,000 iterations. The Brooks and

Gelman (1998) R statistic was close to 1 for all param-
eters and one could therefore conclude that the MCMC
chains had converged.

The relative differences between the mean, median
and mode of the posterior densities were larger for the
additive variance and covariance components than for
the error components. Two additive covariances had
negative mean, median and modes (diameter–branch
angle and height–branch angle) whereas only the
phenotypic covariance between height and branch
angle was negative (Table 2). As expected (Chen and
Shao 1999), the HPD intervals were narrower than
the BCI intervals for all (co)variance components
(Table 2).

Differences between the mean, median and mode of
the posterior densities were largest for the heritability
that was closest to zero (diameter; Table 3). Further-
more, the relative differences between both the lower
and upper levels of the BCI and HPD intervals were
larger for the diameter heritability. Statistical theory
predicts that distributions of a variance ratio like the
heritability should follow F-distributions and therefore
be more skewed at the margins (i.e. close to zero and
one). It can be seen that the posterior density of height is
more skewed than the other heritability densities
(Figs. 1, 2, 3). The two posterior densities of the addi-
tive genetic correlations that are closer to the margins
(�1 and 1) are also more skewed (Figs. 4, 5, 6).

Table 1 The crossing plan with the number of trees per full-sib family that were used in the study (4,970 trees in total)

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

1 22 – – – – 17 – – – – – – – – – – – – – – – – – – – – – – –
2 24 18 30 25 21 25 22 28 – – – – – – – – – – – – – – – – – – – – –
3 – 28 26 20 19 26 29 26 17 – – – – – – – – – – – – – – – – – – – –
4 – – 29 22 19 19 11 24 28 21 – – – – – – – – – – – – – – – – – – –
5 – – – 21 13 16 22 28 13 24 24 – – – – – – – – – – – – – – – – – –
6 – – – – 30 23 14 29 33 25 30 29 – – – – – – – – – – – – – – – – –
7 – – – – – 26 22 30 25 20 – 18 24 – – – – – – – – – – – – – – – –
8 – – – – – – 25 34 27 16 27 28 24 30 – – – – – – – – – – – – – – –
9 – – – – – – – 35 32 27 33 23 31 16 20 – – – – – – – – – – – – – –
10 – – – – – – – – 23 29 23 25 24 26 27 23 – – – – – – – – – – – – –
11 – – – – – – – – – 34 31 23 20 19 24 23 18 – – – – – – – – – – – –
12 – – – – – – – – – – 23 29 18 26 28 30 24 17 – – – – – – – – – – –
13 – – – – – – – – – – – 23 27 29 26 28 28 28 – – – – – – – – – – –
14 – – – – – – – – – – – – 22 27 23 27 19 21 – 31 – – – – – – – – –
15 – – – – – – – – – – – – – 28 26 26 29 24 15 20 23 – – – – – – – –
16 – – – – – – – – – – – – – – 30 22 26 26 12 26 29 30 – – – – – – –
17 – – – – – – – – – – – – – – – 25 25 27 29 33 30 29 28 – – – – – –
18 – – – – – – – – – – – – – – – – 32 22 – 26 30 26 23 22 – – – – –
19 – – – – – – – – – – – – – – – – – 23 15 24 30 28 19 16 28 – – – –
20 – – – – – – – – – – – – – – – – – – 12 19 27 26 29 12 17 25 – – –
21 – – – – – – – – – – – – – – – – – – – 26 25 23 18 22 24 22 26 – –
22 – – – – – – – – – – – – – – – – – – – – 35 30 26 21 33 25 27 25 –
23 – – – – – – – – – – – – – – – – – – – – – 33 31 20 29 20 22 28 27
24 – – – – – – – – – – – – – – – – – – – – – – 30 26 27 25 29 13 30
25 – – – – – – – – – – – – – – – – – – – – – – – 22 32 26 25 19 10
26 – – – – – – – – – – – – – – – – – – – – – – – – 27 27 27 23 25
27 – – – – – – – – – – – – – – – – – – – – – – – – – 22 34 29 27
28 – – – – – – – – – – – – – – – – – – – – – – – – – – 22 22 18
29 – – – – – – – – – – – – – – – – – – – – – – – – – – – 22 24
30 – – – – – – – – – – – – – – – – – – – – – – – – – – – – 31

The parent trees are numbered in boldface (mothers vertically)
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Table 2 Point and interval estimate summary for variance and covariance parameters

Parameter (trait) REML Gibbs sampling

Estimate SEa DCI2.5b DCI97.5b Mean Median Mode BCI2.5c BCI97.5c HPD2.5d HPD97.5d

Additive (co)variances
r2A(D) 0.06734 0.01746 0.0331 0.1016 0.08120 0.07781 0.06827 0.04563 0.1352 0.04143 0.1278
rA(D,H) 0.07073 0.02222 0.0272 0.1143 0.08702 0.08321 0.07679 0.03938 0.1558 0.03370 0.1467
rA(D,B) �0.02728 0.02230 �0.0710 0.0164 �0.03228 �0.0313 �0.03001 �0.09479 0.02503 �0.09484 0.02494
r2

A(H) 0.1805 0.03974 0.1026 0.2584 0.2224 0.2143 0.1991 0.1388 0.3532 0.1294 0.3347
r A(H,B) �0.1213 0.03727 �0.1943 �0.0483 �0.1493 �0.1436 �0.1385 �0.2656 �0.06594 �0.2562 �0.06029
r2A(B) 0.2524 0.05515 0.1443 0.3605 0.3169 0.3073 0.2912 0.1984 0.4908 0.1857 0.4666

Error (environmental) (co)variances
r2E(D) 0.8134 0.01947 0.7752 0.8516 0.8079 0.8083 0.8117 0.7658 0.8484 0.7668 0.8492
rE(D,H) 0.6108 0.01861 0.5743 0.6473 0.6037 0.6047 0.6065 0.5596 0.6431 0.5620 0.6449
rE(D,B) 0.2331 0.01714 0.1995 0.2667 0.2361 0.2358 0.2361 0.1979 0.2763 0.1973 0.2757
r2E(H) 0.6654 0.02521 0.6160 0.7148 0.6457 0.6487 0.6535 0.5744 0.6990 0.5805 0.7030
rE(H,B) 0.07274 0.02211 0.0294 0.1161 0.08679 0.08442 0.07970 0.03755 0.1493 0.03218 0.1421
r2E(B) 0.7613 0.03309 0.6964 0.8262 0.7310 0.7348 0.7435 0.6377 0.8019 0.6483 0.8089

Phenotypic (co)variances
r2P(D) 0.8807 0.01911 0.8432 0.9182 0.8891 0.8884 0.8878 0.85035 0.9318 0.8489 0.9300
r P(D,H) 0.6815 0.01834 0.6456 0.7174 0.6908 0.6898 0.6898 0.6527 0.735 0.6508 0.7327
r P(D,B) 0.2058 0.01688 0.1727 0.2389 0.2038 0.2039 0.2028 0.1645 0.2415 0.1650 0.2419
r 2

P(H) 0.8459 0.02500 0.7969 0.8949 0.8680 0.8650 0.8576 0.8153 0.9383 0.8103 0.9307
r P(H,B) �0.04859 0.02195 �0.0916 �0.0056 �0.06248 �0.06012 �0.05636 �0.1241 �0.01412 �0.1196 �0.01084
r 2

P(B) 1.0140 0.03279 0.9497 1.0783 1.0478 1.0437 1.0393 0.9781 1.1410 0.9716 1.1307

REML: from the restricted maximum likelihood analysis; Gibbs sampling: from posterior distributions of the Gibbs sampling analysis
Traits D density, H height, B branch angle
aStandard error
b95% confidence interval
c95% Bayesian credible interval
d95% highest probability density interval

Table 3 Point and interval estimate summary for heritabilities and correlation parameters

Parameter (trait) REML Gibbs sampling

Estimate SEa DCI2.5b DCI97.5b Mean Median Mode BCI2.5c BCI97.5c HPD2.5d HPD97.5d

Heritabilities
h2(D) 0.07650 0.01920 0.0389 0.1141 0.09105 0.08771 0.07863 0.05224 0.1478 0.04863 0.1413
h2(H) 0.2134 0.04220 0.1307 0.2961 0.2546 0.2482 0.2341 0.1676 0.3796 0.1578 0.3638
h2(B) 0.2490 0.04790 0.1551 0.3429 0.3004 0.2946 0.2833 0.2002 0.4329 0.1909 0.4186

Additive genetic correlations
rA(D,H) 0.6414 0.09890 0.4476 0.8352 0.6418 0.6554 0.6728 0.3970 0.8127 0.4230 0.8261
rA(D,B) �0.2092 0.1652 �0.5330 0.1146 �0.2033 �0.2096 �0.2144 �0.5238 0.1526 �0.5342 0.1389
rA(H,B) �0.5684 0.1107 �0.7854 �0.3514 �0.5602 �0.5717 �0.5967 �0.7615 �0.2939 �0.7760 �0.3175
Error (environmental) correlations
rE(D,H) 0.8302 0.0091 0.8124 0.8480 0.8362 0.8350 0.8325 0.8156 0.8637 0.8135 0.8606
rE(D,B) 0.2962 0.0221 0.2529 0.3395 0.3077 0.3058 0.3038 0.2586 0.3680 0.2560 0.3642
rE(H,B) 0.1022 0.0330 0.0375 0.1669 0.1278 0.1221 0.1104 0.05304 0.2345 0.04325 0.2187

Phenotypic correlations
rP(D,H) 0.7896 0.0077 0.7745 0.8047 0.7864 0.7870 0.7876 0.7662 0.8026 0.7680 0.8038
rP(D,B) 0.2178 0.0179 0.1827 0.2529 0.2113 0.2121 0.2131 0.1683 0.2493 0.1708 0.2512
rP(H,B) �0.0525 0.0230 �0.0976 �0.0074 �0.06504 �.06344 �0.06049 �0.1241 �0.01516 �0.1223 �0.01409

REML: from the restricted maximum likelihood analysis; Gibbs sampling: from posterior distributions of the Gibbs sampling analysis
Traits D density, H height, B branch angle
aStandard error
b95% confidence interval
c95% Bayesian credible interval
d95% highest probability density interval
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REML and Gibbs sampling analysis of simulated data

The Gibbs sampling analysis of each simulated replicate
was based on an MCMC chain of 110,000 iterations that
were thinned at each 10th iteration and with a burn-in of
10,000. Results from the simulation study are presented
in Table 4. The mean of the 50 REML estimates corre-
sponded very well with the exact values for both herit-
abilities, whereas the 95% confidence intervals were
considerably biased downwardly. The mode of the trait
with the lower heritability was close to the actual value
of 0.1, but the mode of the higher heritability was
overestimated. The mean and median of the posteriors
were considerably higher than the exact values for both
traits. Both BCI2.5 and HPD2.5 were upwardly biased,

whereas the HPD97.5 provided accurate estimates. Some
explanations of those biases are given in next section.

Discussion

The long-lasting and sometimes infected controversy
between practicians of standard frequentist and Bayes-
ian statistics is likely to continue for some time, but
methodologically both paradigms seem to be converging
(Blasco 2001; Bayarri and Berger 2004). For example,
MCMC methods like the Gibbs sampler can be used for
both frequentist and Bayesian inference (e.g. Xu 2003),
and much of the post-analysis of Bayesian MCMC
chains is based on frequentist methods (Bayarri and
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Fig. 1 Posterior density of the heritability of diameter

0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

Heritability

P
os

te
rio

r 
de

ns
ity

Fig. 2 Posterior density of the heritability of height
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Fig. 3 Posterior density of the heritability of branch angle
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Fig. 4 Posterior density of the additive genetic correlation between
diameter and height
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Berger 2004). Moreover, when the parameters of the
mixed linear model are assigned non-informative uni-
form distributions, the maximum likelihood estimates of
the variance components from a REML analysis should
be identical to the mode of the Bayesian posterior dis-
tribution (Sorensen and Gianola 2002).

Based on the results from the simulated data we can
conclude that the AI REML estimates are accurate but
the mode of posterior distributions from the Gibbs
sampling can be overestimated depending on the level of
heritability. Moreover, the delta method produced con-
fidence intervals that were biased downwardly. The
highest probability density (HPD) interval represents a
better interval estimate, but was slightly biased at the
lower level. For the point estimates, the RMSE were

smaller for REML than for the Gibbs sampler. That
both point and interval summaries of the posterior dis-
tributions of the heritabilities are overestimated suggests
that the lower part of the posterior is truncated. Choice
of priors can sometimes have a considerable influence
on the result (e.g. Lin and Berger 2001), whereas the
opposite can also be the case (Blasco et al. 1998).
Unfortunately, we lacked the possibility to change the
priors in the program gibbs1f90 (Misztal et al. 2002).
Some preliminary simulations with another univariate
Gibbs sampler under development suggest that the
common procedure to set the parameter m i to �2 results
in a posterior distribution of the heritability that actually
is truncated in the lower part. Better performance was
obtained by setting m i to 0, but further evaluation of this
prior is needed. Moreover, it has recently been argued
that the inverse gamma family (which includes the
inverse chi-square and inverse Wishart distributions) can
be problematic as prior for variances and result in biased
estimates (Gelman 2006). Consequently, additional
simulation studies of the effect of different priors on the
individual model are certainly warranted.

In an earlier simulation study, van Tassel et al. (1995)
compared the effect of selection on estimates of variance
components using Gibbs sampling (posterior mean and
mode) and REML based on populations of 400 indi-
viduals. The most important result was that the Gibbs
sampling (posterior mean) and REML estimates were
quite similar, especially for traits with high heritability.
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Fig. 5 Posterior density of the additive genetic correlation between
diameter and branch angle
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Fig. 6 Posterior density of the additive genetic correlation between
height and branch angle

Table 4 Point and interval estimate summary from simulations of
two traits: heritability parameters from restricted maximum likeli-
hood (REML) analyses and posterior distributions of Gibbs sam-
pling analyses

Parameter
(simulated trait)

h2(1) h2(2)

Value RMSEa Value RMSEa

Expected estimate 0.1000 0.5000
Expected CI2.5b 0.0213 0.3180
Expected CI97.5b 0.2356 0.7891

Mean values, REML estimation
ML estimate 0.1100 0.0549 0.5023 0.1166
SEc 0.0531 0.1151
DCI2.5d 0.0059 0.0385 0.2767 0.0089
DCI97.5d 0.2141 0.0759 0.7278 0.0258

Mean values, Gibbs sampling
Posterior mean 0.1263 0.0645 0.5550 0.1207
Posterior median 0.1191 0.0614 0.5484 0.1218
Posterior mode 0.1071 0.0585 0.5330 0.1274
BCI2.5e 0.0360 0.0815 0.3509 0.0961
BCI97.5e 0.2585 0.0978 0.7906 0.1026
HPD2.5f 0.0366 0.0330 0.3472 0.1031
HPD97.5f 0.2321 0.0858 0.7824 0.1108

aRoot mean square error
bExact 95% confidence interval calculated based on quantiles from
the F-distribution
cStandard error
d95% confidence intervals based on the delta method
e95% Bayesian credible interval
f95% highest probability density interval
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However, the variance components estimated with the
Gibbs sampler had consistently smaller mean squared
error (i.e. less bias) than those obtained with REML.
A similar result was found in another simulation study
where breeding value estimates were compared between
REML and Gibbs sampling procedures (Schenkel et al.
2002). For traits with small variance components, van
Tassel et al. (1995) found that the posterior mode esti-
mates from the Gibbs sampler tended to be biased and
the distributions skewed.

We are aware of only two studies in the tree breeding
literature that have compared REML and Gibbs sam-
pling estimates based on the individual model. Soria
et al. (1998) compared the mean, median and mode of
the posterior distributions of the heritability and addi-
tive genetic correlation with its corresponding REML
estimate of height and diameter in Eucalyptus globulus.
They found differences between the mean, median and
mode of both the heritabilities and the additive genetic
correlation that were similar to the levels in our study.
Worth noting in their study is that the REML estimates
of the two heritabilities (approximately 0.13 and 0.20 for
diameter and height, respectively) were considerably
higher than the Gibbs sampling estimates (the REML
estimates were higher than the HPD97.5 estimates).
However, the Bayesian and frequentist estimates of the
additive genetic correlation were more consistent. The
other study is a comparison between REML and Gibbs
sampling estimates of height at two different ages and
two different sites in P. taeda (Gwaze and Woolliams
2001). In their study, the heritability estimates (posterior
mean) from the Gibbs sampling analyses were larger for
all traits than those from REML, whereas the genetic
correlations were more similar. Gwaze and Woolliams
(2001) concluded that the differences were small and
therefore unlikely to be important. However, the Gibbs
sampler produced a heritability estimate at age 23 at site
B that was 1.6 times larger than that from REML
(0.62 compared to 0.39), a difference that can hardly be
neglected.

Finally, from a breeding point of view, it is encour-
aging that the genetic correlations between branch angle
and growth traits are low or negative. Both the delta and
Bayesian intervals of the additive genetic correlation for
D versus B span zero, and the strongly negative value for
rA(H,B) means that faster growing trees develop better
branching (lower B scores denote more favourable
branch angles; cf. Haapanen et al. 1997, observe their
reversed scaling). It is to be noted that the negative
phenotypic correlation rE(H,B) is well in accordance
with the other parameter values, including the fact that
the highest heritability refers to branch angle, which is
expected according to experience (e.g. Haapanen et al.
1997).
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